Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(3): 1743-1752, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38373217

RESUMO

Brush cytology is a sampling technique extensively used for mucosal surfaces, particularly to identify malignancies. A sample is obtained by rubbing the brush bristles over the stricture or lesion several times until cells are trapped. Brush cytology detection rate varies, with malignancy confirmed in 15-65% of cases of adenocarcinoma-associated biliary strictures and 44-80% of cases of cholangiocarcinoma. Despite the widespread use of brush cytology, there is no consensus to date defining the optimal biliary brushing parameters for the collection of suspicious lesions, such as the number of passes, brushing rate, and force applied. The aim of this work is to increase the brush cytology diagnostic yield by elucidating the underlying mechanical phenomena. First, the mechanical interactions between the brush bristles and sampled tissue are analyzed. During brushing, mucus and detached cells are transferred to the space between the bristles through the capillary rise and flow eddies. These mass transfer mechanisms and their dependence on mucus rheology as a function of pH, brush displacement rate, and bristle geometry and configuration are examined. Lastly, results from ex vivo brushing experiments performed on porcine stomachs are presented. Clinical practitioners from a variety of disciplines can apply the findings of this study to outline clear procedures for cytological brushing to increase the sensitivity and specificity of the brushings.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Colestase , Humanos , Citologia , Citodiagnóstico/métodos , Colestase/patologia , Sensibilidade e Especificidade
2.
Langmuir ; 39(31): 10872-10880, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493450

RESUMO

Manipulating a droplet by electrowetting-on-dielectric (EWOD) is vital in various fields ranging from industrial applications to life sciences. As of now, EWOD research has focused primarily on aqueous electrolytes and ionic liquids. This paper investigates the electrowetting behavior of weak polyelectrolyte solutions containing poly(acrylic acid) (PAA). The study reveals distinct wetting behavior of weakly and fully charged PAA droplets controlled by their solution pH. Under an applied electric field, strongly ionized PAA wets more effectively than weakly charged PAA. The electrowetting hysteresis of fully ionized PAA droplets was also higher than that of weakly charged droplets. The reason may be the suppression of retraction flow near the contact line. In this thin region, the electric field aligns the stretched polymer chains perpendicular to the dielectric surface, thus affecting the bulk rheological properties. The results reveal how charge-connectivity and polyelectrolyte conformation under an external electric field can control the electrowetting gain and the hysteresis. This previously unexplored electrowetting mechanism of polyelectrolyte solutions might help order and manipulate biological polyelectrolytes, such as deoxyribonucleic acid (DNA), polypeptides, and glycosaminoglycans.

3.
Biomacromolecules ; 24(6): 2575-2586, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37159425

RESUMO

The incorporation of proteins into hydrogel networks has the potential to enhance bioactivity and biocompatibility. In this work, we report on the fabrication of a polymer-protein hydrogel consisting of polymethacrylamide (PMAAm) and bovine serum albumin (BSA). The hydrogel was prepared by in situ polymerization of methacrylamide in the presence of BSA at elevated temperatures. Due to its specific interactions between corresponding functional groups, BSA acts as a cross-linker of polymer chains. Hydrogel with optimized composition and preparation conditions (BSA/methacrylamide ratio and synthesis temperature) demonstrated excellent mechanical properties. Due to the presence of side amide groups in PMAAm, the energy barrier required for heat-induced transformation of globular BSA structures into unfolded linear structures decreased, causing a significant shift in the transition temperature. This transition led to a steep and substantial strengthening of the two-component hydrogel. After compressive and shear deformation, the hydrogel restored damaged structure and demonstrated superior fatigue resistance. Compared to BSA that is globular, it was found that BSA in its unfolded state has a much greater impact on the mechanical properties of the hydrogel.


Assuntos
Hidrogéis , Soroalbumina Bovina , Hidrogéis/química , Soroalbumina Bovina/química , Polímeros/química , Regulação da Temperatura Corporal
4.
Biomacromolecules ; 23(8): 3222-3234, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35771870

RESUMO

The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.


Assuntos
Hidrogéis , Nanopartículas , Cátions , Celulose/química , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas/química , Polieletrólitos , Engenharia Tecidual/métodos
5.
ACS Appl Mater Interfaces ; 14(22): 26287-26294, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617310

RESUMO

Developing new underwater glue adhesives with robust and repeatable adhesion to various surfaces is promising and useful in marine life and medical treatments. In this work, we developed a novel glue based on a copolymer with a cation-co-aromatic sequence where the cationic units contain both catechol and positively charged sites. The glue consists of a crosslinked copolymer of poly(2-hydroxy-3-phenoxypropyl acrylate-co-3-(5-(3,4 dihydroxyphenyl)-4-oxo-3 N-pentyl)imidazolium) bromide in dimethyl sulfoxide. Solidification of the glue, triggered by contact with water, undergoes a coacervation stage and causes a drastic growth of its mechanical properties over time. The glue demonstrates fast-developing, strong, and repeatable underwater adhesion to different materials and can maintain its strength for a long time. The adhesion strength tends to increase with the surface energy of the substrate material, to a maximum value of 160 kPa found in plywood. Experiments conducted in aqueous media with different pH and ionic strengths, including physiological conditions and seawater, showed an even stronger adhesion than that evolved in deionized water. Thus, the developed glue is a promising candidate for use in marine life, tissue adhesives, and other freshwater and saline water applications.


Assuntos
Adesivos , Polímeros , Adesivos/química , Cátions , Polímeros/química
6.
ACS Omega ; 7(14): 11887-11902, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449967

RESUMO

Blending two gelators with different chemistries (12-hydroxystearic acid and a bis-urea derivative, Millithix MT-800) was used to impart shape stability to CrodaTherm 29, a bio-based phase change material (PCM), melting/crystallizing at near-ambient temperature. The gelators immobilized the PCM by forming an interpenetrating fibrillar network. 15 wt % concentration of the gelators was found to be effective in preventing liquid PCM leakage. In order to improve the mechanical properties and thermal conductivity (TC) of the PCM, gelation of suspensions of multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GnPs) in a molten material was done at concentrations exceeding their percolation thresholds. Compared to pristine PCM, the gelled PCM containing 3.0 wt % of GnPs demonstrated a shorter crystallization time, ∼1.5-fold increase in strength, improved stability, and ∼65% increase in TC. At the same time, PCM filled with up to 0.6 wt % of MWCNTs had diminished strength and increased leakage with a slight TC improvement. Gelation of PCM did not significantly alter its thermal behavior, but it did change its crystalline morphology. The developed shape-stable PCMs may have a wide range of applications in ambient temperature solar-thermal installations, for example, temperature-controlled greenhouses, net zero-energy buildings, and water heaters.

8.
World J Gastroenterol ; 27(41): 7207-7209, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34887638

RESUMO

Physical analysis of the pancreatic cystic lesions (PCLs) fluid as expressed by the rheological behavior ("string sign") can improve the diagnostic yield and should be integrated in every multimodal PCLs workup.


Assuntos
Cisto Pancreático , Neoplasias Pancreáticas , Biomarcadores , Líquido Cístico , Humanos , Pâncreas/diagnóstico por imagem , Cisto Pancreático/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem
9.
Biomacromolecules ; 22(11): 4535-4543, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609837

RESUMO

We report on the production of a flame-resistant xanthan gum (XG)-based hydrogel formulation, which could be directly applied onto the skin for protection against burning projectiles. The hydrogel cream represents an efficient use of XG and starch, both of which are biodegradable, reusable natural materials and are also GRAS-certified. The flame-retardant agent resorcinol bis(diphenyl phosphate) (RDP) was shown to be nontoxic to cells in vitro when adsorbed directly onto the starch delivery vehicle. Three hydrogel formulations were studied, the pure XG hydrogel, commercial FireIce hydrogel, and RDP-XG/RDP-starch hydrogel. After application of a direct flame for 150 s, the RDP-XG/RDP-starch hydrogel produced a thick char layer, which was easily removed, showing undamaged chicken skin and tissue underneath. In contrast, complete burning of skin and tissue was observed on untreated control samples and those covered with FireIce and pure XG hydrogels. The thermal protective performance test was also performed, where the heat transfer was measured as a function of time for all three hydrogels. The RDP-XG/RDP-starch hydrogel was able to prolong the protection time before obtaining a second-degree burn for 103 s, which is double that for FireIce and triple that for the pure XG hydrogel. The model proposed involves endothermic reactions, producing char and burning "cold", as opposed to simply relying on the adsorbed water in the hydrogel for burn protection.


Assuntos
Retardadores de Chama , Hidrogéis , Compostos de Bifenilo , Fosfatos , Polissacarídeos Bacterianos , Resorcinóis , Amido
10.
ACS Appl Mater Interfaces ; 13(30): 35700-35708, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34292704

RESUMO

Fuel cell (FC) is an attractive green alternative for today's fuel combustion systems. In common FCs, a polymer electrolyte membrane selectively conducts protons but blocks the passage of electrons and fuel. Nafion, the current benchmark membrane material, has a superior conductivity owing to unique morphology comprising randomly oriented elongated ionic nanochannels within its Teflon-like matrix. Channel orientation enhances Nafion conductivity, yet there has been no facile method to induce a stable alignment in the desired through-plane (TP) direction. Here, we report an approach based on dual electrospun Nafion-PVDF nanofiber composites that yields a stable TP alignment. It utilizes extreme thinness and strong inherent orientation within electrospun nanofibers, which is readily converted to TP alignment by plunging an electrospun nanofiber mat into a thin slit, resulting in nanofiber buckling and subsequent consolidation. Using TEM and SAXS, we demonstrate a pronounced and sustained TP ion channel orientation in prepared membranes, yielding a highly anisotropic swelling and conductivity exceeding that of bulk Nafion when normalized to Nafion content. The analysis also highlights the importance of PVDF as a stabilizing component, preserving orientation upon annealing, while a similarly prepared pure Nafion membrane loses anisotropy. The approach holds potential to advance the FC technology by overcoming current limitations of ionomeric membranes.

11.
Carbohydr Polym ; 266: 118131, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044947

RESUMO

This work focuses on the development of a responsive sponge made of an anionic cellulose nanocrystal (CNC) skeleton that is electrostatically crosslinked by a pH-responsive poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) polyelectrolyte complex (PEC). The results prove the formation of a global percolated network comprised of disordered CNC rods crosslinked by PEC clusters. The bulk density of the freeze-dried CNC-PEC sponges increases from 35 to 93 mg/cm3 with PEC concentration, while the compression modulus of dry specimens increases from 7 up to 62 kPa. At the lowest PEC concentration of 1 wt%, at pH 2.0, the compression modulus decreases to 0.9 kPa, whereas at pH 5.5, it increases to 42 kPa. The intensive complexation between sponge constituents is also reflected in a reduced ability to bind charged dyes at neutral pH values. Decreasing the pH results in an increased adsorption efficiency for anionic dyes, while raising the pH improves the cationic dye adsorption.

12.
ACS Nano ; 15(5): 8753-8760, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33961409

RESUMO

Circularly polarized (CP) lasers derived from low-cost and renewable raw sources are attracting increasing attention in photonics and material science. Here, we present a facile and effective approach to fabricate CP lasers by the evaporation-induced assembly of cellulose nanocrystals (CNCs) and a laser dye. The obtained laser exhibits a controlled chiral nematic structure, which acts as a chiral optical cavity, and varied chiral coupling interactions. It is shown that the CNC-based laser can modify the polarization state of the laser into left-handed polarization, leading to strong CP laser emission (CPLE) with a dissymmetry factor up to 0.35. The chiral nematic CNC structure proves to be a versatile yet straightforward strategy to generate strong and tailored CPLE.

13.
ACS Biomater Sci Eng ; 7(6): 2548-2557, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33957037

RESUMO

Intravesical therapy for the treatment of superficial urinary bladder tumors is promising. However, it is also challenging, due to bladder contraction and relaxation and drug elimination via urination or dilution by urine production. We developed a biodegradable drug-eluting device positioned in the renal pelvis as an alternative strategy for bladder instillation. The urine drains from the renal pelvis into the ureter, collects the eluted drug, and transports it into the bladder. The combination of the renal pelvis and the bladder creates a two-compartment system. The drug is administered into the depot compartment, the renal pelvis, and is instantly and homogeneously distributed into the central compartment, the bladder. This results in an increase in its residence time and in gradual adsorption into the urothelium. The device is inserted through the ureter, followed by upset bulging after reaching the renal pelvis in order to guarantee fixation, while preventing urinary obstruction. The device is made of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers that encapsulate a chemotherapeutic drug, cisplatin (1.17-2.34% w/w). Experimental studies of the stresses developed during the bulging and simulations of the urine flow interaction with the device demonstrated structural longevity and operational safety of the device. Sustained release of 94% of the device content was demonstrated after 1 week in vitro with a flow rate of 30 mL/h. We believe that the drug-eluted device may offer a significant advantage over existing therapies for treatment of nonmuscle invasive bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Preparações de Ação Retardada/uso terapêutico , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Urotélio
14.
ACS Appl Bio Mater ; 4(5): 4131-4139, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006827

RESUMO

BACKGROUND: upper airway complications are common sequelae of endotracheal tube (ETT) intubation, and systemic corticosteroids are considered a mainstay treatment for this problem. Drug-eluting ETT may present an attractive option for topical steroid delivery while avoiding systemic side effects and improving the therapeutic outcome. The objective of the present study is to evaluate the reduction of tube-related tracheal morbidity via a self-designed steroid-eluting ETT with controlled sustained release properties in an animal model. METHODS: steroid-eluting ETTs were coated by poly(lactic-co-glycolic acid) -electrospun nanofibers loaded with mometasone furoate (MF) as a model drug. Animals were randomly assigned into three equal groups: non-intubated, blank-ETT, and loaded-ETT. The intubation interval was 1 week. Specimens were analyzed by histology, specific fibrosis staining, and scanning electron microscopy (SEM). RESULTS: the blank-ETT group exhibited a significant increase in tracheal mucosal thickness compared to the loaded-ETT and control groups. Average tracheal mucosal thickness was 112 ± 34, 242 ± 49, and 113 ± 43 µm in the control, blank-ETT, and loaded-ETT groups, respectively. The blank-ETT group exhibited a significant increase in tracheal fibrosis compared to the loaded-ETT and control groups. Relative fibrosis values were 0.07 ± 0.05, 0.154 ± 0.1, and 0.0984 ± 0.084% for the control, blank-ETT, and loaded-ETT groups, respectively. While SEM imaging showed normal surface structures in the control group, intubated blank-ETT rats showed severe surface structural damage, whereas only mild damage was observed in the loaded-ETT group. CONCLUSIONS: local sustained release of MF via a self-designed drug-eluting ETT is a potential therapeutic approach which may significantly reduce tube-related upper airway morbidity.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Intubação Intratraqueal/efeitos adversos , Furoato de Mometasona/efeitos adversos , Animais , Masculino , Teste de Materiais , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Respiração Artificial
15.
Chemistry ; 27(20): 6112-6130, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284500

RESUMO

The Coronavirus disease 2019 (COVID-19) emergency has demonstrated that the utilization of face masks plays a critical role in limiting the outbreak. Healthcare professionals utilize masks all day long without replacing them very frequently, thus representing a source of cross-infection for patients and themselves. Nanotechnology is a powerful tool with the capability to produce nanomaterials with unique physicochemical and antipathogen properties. Here, how to realize non-disposable and highly comfortable respirators with light-triggered self-disinfection ability by bridging bioactive nanofiber properties and stimuli-responsive nanomaterials is outlined. The visionary road highlighted in this Concept is based on the possibility of developing a new generation of masks based on multifunctional membranes where the presence of nanoclusters and plasmonic nanoparticles arranged in a hierarchical structure enables the realization of a chemically driven and on-demand antipathogen activities. Multilayer electrospun membranes have the ability to dissipate humidity present within the mask, enhancing the wearability and usability. The photothermal disinfected membrane is the core of these 3D printed and reusable masks with moisture pump capability. Personalized face masks with smart nano-assisted destruction of pathogens will bring enormous advantages to the entire global community, especially for front-line personnel, and will open up great opportunities for innovative medical applications.


Assuntos
COVID-19 , Humanos , Máscaras , SARS-CoV-2
16.
Langmuir ; 36(51): 15572-15582, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33320688

RESUMO

Two organogelators of different chemistry (a fatty acid derivative and a bis-urea derivative), as well as their blends, were used to impart shape stability to a bio-based phase-change material (PCM) bearing a near-ambient phase-transition temperature. Characterization of the individual gelators and their blends revealed their ability to immobilize the PCM by forming a continuous fibrillar network. The fibrils formed by the fatty acid derivative were helical, while the bis-urea derivative formed smooth fibrils. Also, the bis-urea derivative formed a continuous network at a lower critical concentration than the fatty acid derivative. At each fixed concentration, the bis-urea derivative yielded gels with higher thermal stability than the fatty acid derivative. The two gelators blended in certain ratios demonstrated a strong synergistic effect, providing gels with a significantly higher modulus (∼20-fold) and yield stress (∼1.5-fold) than each gelator individually. PCM gelation did not significantly affect its thermal behavior, however, affected its crystalline morphology. The gelled PCM displayed stacked structures, consisting of alternating pure PCM layers separated by layers formed by gelator fibrils. The phase diagram of the triple system comprising both gelators and PCM demonstrated either single or double gelation behavior depending on the composition. These findings may provide guidelines for the development of novel, shape-stable PCMs, which could be of potential use in various thermal energy storage applications.

17.
Materials (Basel) ; 13(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961759

RESUMO

Electric field strength and polarity in electrospinning processes and their effect on process dynamics and the physical properties of as-spun fibers is studied. Using a solution of the neutral polymer such as poly(methyl methacrylate) (PMMA) we explored the electrospun jet motion issued from a Taylor cone. We focused on the straight jet section up to the incipient stage of the bending instability and on the radius of the disk of the fibers deposited on the collecting electrode. A new correlation formula using dimensionless parameters was found, characterizing the effect of the electric field on the length of the straight jet, L˜E~E˜0.55. This correlation was found to be valid when the spinneret was either negatively or positively charged and the electrode grounded. The fiber deposition radius was found to be independent of the electric field strength and polarity. When the spinneret was negatively charged, L˜E was longer, the as-spun fibers were wider. The positively charged setup resulted in fibers with enhanced mechanical properties and higher crystallinity. This work demonstrates that often-overlooked electrical polarity and field strength parameters influence the dynamics of fiber electrospinning, which is crucial for designing polymer fiber properties and optimizing their collection.

18.
ACS Nano ; 14(10): 13380-13390, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32946222

RESUMO

We report on the formation of water-in-water liquid crystal emulsions with permeable colloidal assemblies. Rodlike cellulose nanocrystals (CNC) spontaneously self-assemble into a helical arrangement with the coexistence of nonionic, hydrophilic polyethylene glycol (PEG) and dextran, whereas the two polymer solutions are thermodynamically incompatible. Stable water-in-water emulsions are easily prepared by mixing the respective CNC/polymer solutions, showing micrometric CNC/PEG dispersed droplets and a continuous CNC/dextran phase. With time, the resulting emulsion demixes into an upper, droplet-lean isotropic phase and a bottom, droplet-rich cholesteric phase. Owing to the osmotic pressure gradient between PEG and dextran phases, target transfer of cellulose nanoparticles occurs across the water/water interface to reassemble into a liquid crystal-in-liquid crystal emulsion with global cholesteric organization. The observed structural, optical, and temporal evolution confirm that the colloidal particles in the two immiscible phases experience short-range interactions and form long-range assemblies across the interface.

19.
Mater Horiz ; 7(2): 511-519, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32774862

RESUMO

Photonic crystals based on plasmonic or dielectric periodic structures have attracted considerable interest owing to their capabilities to control light-matter interactions with tailored precision. By using a nanocellulose derived chiral liquid crystal as a building block, here we demonstrate a bio-inspired dual photonic structure that contains the combination of microscopic periodic 1D surface grating and nanoscopic helical organization, giving rise to programmable colour mixing and polarization rotation. We show that a variation in the photonic band-gap in the bulk matrix leads to simultaneous control over the reflection and diffraction of light with controllable iridescence.

20.
J Phys Chem Lett ; 11(16): 6697-6703, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787220

RESUMO

Liquid crystalline cellulose nanocrystals (CNCs) which can change their structural and optical properties in an electric field could be a new choice for advanced optoelectronic devices. Unfortunately, the exploration of its performance in an electric field is underdeveloped. Hence, we reveal some interesting dielectric coupling activities of liquid crystalline CNC in an electric field. The CNC tactoid is shown to orient its helix axis normal to the electric field direction. Then, as a function of the electric field strength and frequency, the tactoid can be stretched along with a pitch increase, with a deformation mechanism significantly differing at varied frequencies, and finally untwists the helix axis to form a nematic structure upon increasing the electric field strength. Moreover, a straightforward method to visualize the electric field is demonstrated, by combining the CNC uniform lying helix textures with polarized optical microscopy. We envision these understandings could facilitate the development of liquid crystalline CNC in the design of electro-optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...